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Abstract

Hyphenated analytical techniques such as gas chromatography—mass spectrometry (GC—-MS) can provide extensive amounts of analytical
data when applied to environmental samples. Quantitative analyses of complex contaminant mixtures by commercial preprocessing software
are time-consuming, and baseline distortion and incomplete peak resolution increase the uncertainty and subjectivity of peak quantification.
Here, we present a semi-automatic method developed specific for processing complex first-order chromatographic data (e.g. selected ion
monitoring in GC-MS) prior to chemometric data analysis. Chromatograms are converted into semi-quantitative variables (e.g. diagnostic
ratios (DRs)) that can be exported directly to appropriate softwares. The method is based on automatic peak matching, initial parameterization,
alternating background noise reduction and peak estimation using mathematical functions (Gaussian and exponential-Gaussian hybrid) with
few (i.e. three to four) parameters. It is capable of resolving convoluted peaks, and the exponential-Gaussian hybrid improves the description
of asymmetric peaks (i.e. fronting and tailing). The optimal data preprocessing suggested in this article consists of estimation of Gaussian
peak parameters and subsequent calculation of diagnostic ratios from peak heights. We tested the method on chromatographic data from 2(
replicate oil samples and found it to be less time-consuming and subjective than commercial software, and with comparable data quality.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction mixtures of contaminants with different physicochemical
properties, degradability, and toxicity.

Hyphenated analytical techniques like gas chromatogr- Despite of this inherent complexity, only a small per-
aphy—mass spectrometry (GC-MS), liquid chromatography— centage of the total number of compounds are usually con-
mass spectrometry (LC-MS), and gas chromatography—sidered for environmental monitoring and chemical finger-
Fourier-transform infrared spectroscopy (GC-FTIR), are printing[1-4]. A well-known example concerns monitoring
essential analytical tools for, e.g. research and developmentand source correlation of polycyclic aromatic compounds
environmental monitoring, and process chemistry. These (PACs), which are ubiquitous organic contaminants with
methods have the capability of generating extensive amountsvarying toxicity, mutagenicity, and carcinogenicity. In ad-
of data when applied to complex mixtures of contaminants dition to biogenic sources, PACs enter the environment from
as those present in polluted environmental samples (e.g. sedpyrogenic and petrogenic sources and their distributions are
iment, soil, sludge, and biota). Such samples often containoften very complex. However, most environmental studies

include merely 16 PACs, selected from the US EPA pri-
ority pollutant list as relevant indicators of PAC pollution
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pounds are often reduced prior to the chemical analysis.during column deterioration will affect the multivariate data
One reason is that data preprocessing is time-consuming an@nalysis negatively, due to changes in intensity distribution
costly, but it also plays a role that univariate statistical anal- of adjacent retention times within a peak region. Peak
ysis is vastly impeded when considering a large number of quantification is less affected by these factors since peak
target compounds. areas and heights are relatively independent of peak shape.
Chemometric methods, e.g. principal component analysis  Eide et al. (2001) presented a strategy to predict muta-
have been used frequently since the late 1990s for data analgenicity of organic extracts of exhaust particles from full
ysis in environmental monitoring and chemical fingerprint- scan GC-MS patterns of complex mixtufg]. They based
ing studie43,5—7]. One advantage of multivariate compared data preprocessing on an iterative curve resolution technique
to univariate statistical methods is the ease by which rela- [22,23]capable of resolving second-order data (i.e. full-scan
tions between multiple samples and variables can be resolvedsC—-MS data were resolved into chromatographic peaks and
and visualized by score and loading plots. Additional advan- mass spectra). Curve resolution techniques have been used
tages include noise reduction, obtained by multiple measure-frequently to resolve overlapping peaks in second-order
ments of the same phenomenon (e.g. interrelated variables)data[24,25] However, these methods are not applicable to
and the ability to detect outlief8]. However, multivariate  first-order data such as GC—MS with selected ion monitoring
methods still depend on chromatographic data preprocessing(SIM). Furthermore, iterative curve resolution techniques
which traditionally have focussed on resolving and quantify- for resolving second-order data (GC-MS scan) are not
ing peaks using internal and quantification standards. likely to be able to resolve peaks in very complex chemical
In processing software included in software packages mixtures such as oil because multiple peak overlap (5-10
of mass spectrometers it is unlikely to select one set of peaks) occur frequently.
peak identification and quantification parameters, optimal  Numerous mathematical functions have been used for pre-
for hundreds of peaks with different signal-to-noise ratio, sentation of chromatographic peaks and for deconvolution of
chromatographic resolution, and shape. Especially for incompletely resolved peaks in first-order d§2é]. Many
baseline distorted and incompletely separated peaks, manudiunctions are based on the Gaussian function which gives
parameter adjustment is often necessary leading to increasedood approximations of symmetric chromatographic peaks
subjectivity and time-consumption. The demands for [27]. However, for asymmetric peaks, a Gaussian approxima-
guantification- and surrogate standards as well as retentiontion is not adequate, and other more flexible functions give
time shifts are further impediments for preprocessing better peak descriptiorjf26—29] On the other hand, these
data from the analysis of complex chemical mixtures. functions are often too flexible for proper approximation of
Partly overlapping peaks are usually quantified using experimental peaks, and are hence inapplicable for screening
perpendicular-drop or tangent-skimming algorithms incor- purposes.
porated in commercial integratof9,10]. However, these In this paper, we present a method for semi-quantitative
methods introduce systematic errors in the calculated peakanalysis and screening of complex chemical mixtures. The
areas and heights, depending on the degree of peak asymmethod is developed specific for semi-quantitative analysis
metry and relative peak sif8-11] Thus, to exploit the full of first-order data, and here we apply it for preprocessing
potential of multivariate statistical methods for simultaneous GC-MS (SIM) data of petroleum hydrocarbons for use
statistical analysis of extensive data, and to reduce the sub-4n forensic oil spill identification (i.e. source correlation).
jectivity and uncertainty introduced by human intervention, The method is based on automatic peak matching, initial
there is a need to improve existing preprocessing methods. parameterization, alternating background noise reduction
One approach to deal with the above-mentioned problemsand peak estimation, using mathematical functions with few
is to perform the analysis on sections of digitized chro- parameters.
matogramg$12—15] However, such analyses are sensitive to
even minute variations in retention times, because each indi-2. Method
vidual scan number is a variable. Several alignment methods
have been suggested to correct for retention time shifts in  The overall concept of a joint method for preprocessing
chromatographic datfl3,15-17] Dynamic time warping first-order data from hyphenated analytical techniques is to
and correlation optimized warping are alignment methods reduce the time and cost of processing complex chemical
that seem to work for a broad range of chromatograms data, increase data quality, and to increase objectivity. Our
[12,15,18-20] Alignment combined with background method consists of a collection of procedures that altogether
noise reduction and normalization reduces the uncertainty convert chromatograms into semi-quantitative variables, i.e.
and subijectivity introduced by peak quantification, and diagnostic ratios (DRs), which have been used frequently
it makes simultaneous analysis of contaminant mixtures for oil spill identification [30-33] The method is capable
by, e.g. PCA feasiblg12]. However, these methods can of extracting ratios based on peak areas or heights, and the
introduce erroneous daftd9,20], and residual misalignment  DRs can easily be externally normalized to the ratio in the
is sometimes present in dafd2,19,20] Furthermore, laboratory reference analyzed closest in time to the analytical
variations in peak shape (e.g. from symmetrical to tailing) oil sample[31].
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A compound database (i.e. retention times (RT), chemical [ import reference sample | [ Import analytical sample |
names, and abbreviations) is set up prior to chromatographic l l
preprocessing. Furthermore, semi-quantitative variables
are defined in a variable database, which in contrast to the (Coarse retention time correction\ /Determining RTs based on the

~

compound database can be redefined at all times during l RTs °fc:2§e'setf?r:‘:‘mcz anlyzed
data processing. The preprocessing method is divided into a Peak matching based on l )
procedure for laboratory reference chromatograms, and one correlation of segments

for sample chromatograms. The peak matching algorithm | T“etﬁgfe‘;‘;f::;:S“:;EI’:SSZ‘ in
is based on the fact that chromatograms of replicate samples|  petermining RTs from zero estimated by Interpolation
are identical, except for differences unrelated to the chemical crossing JANS )
composition (e.g. retention time shifts and detector sensitiv- \ /
ity). Thus, peaks in replicate reference chromatograms are Estimation of chromatographic noise

matched in a three-step procedure, whereas peaks in sample

chromatograms are matched from retention times of the cor- l

responding peaks in the reference analyzed closest in time. Initial parameterization

Subsequently, peak limits are determined as zero crossings l

of the first derivative of the chromatogram, on either side of

the peak maximum. A subsection of these data points is used Imposing noise limit

for calculating peak parameters, assuming either Gaussian Simplex parameter estimatio:;|

or modified Gaussian peak shapes. The procedure combines Substitute old estimates

background noise reduction (i.e. imposing an increasingly

large noise limit to data) and simplex estimation of peak pa- ¢ Quality control

rameters. Finally, DRs and their uncertainties are calculated, Calculation of DRs and RSDs

quality controlled, and exported to chemometric software. i

Integer values (i.e. scan numbers) are used throughout the ar-

ticle as retention time. A flowchart of the method is shown in Export data to chemometric software

Fig. 1

Fig. 1. Flowchart for the data preprocessing method.
2.1. Experimental and software

211 Application of a reference 315°C and hold for 1 min during transfer; carrier gas:
4 APP helium (1.0 ml/min); temperature program: 35 (2 min),

Repeated analysis of a laboratory reference sample is 350°C/min to 100°C. 5°C/min to 315 (20 min): data acquisi-

rerequisite for proper data preprocessing. Its sample char-.~ . -
prerequ PTOpE prepr 9 P tion time 2.34 scans/s. Mass spectrometric conditions: trans-
acteristics and chemical composition need to be comparable, ~ . . )
: fer line and ion source temperature: 300, and A50re-

to those of the analytical samples. Hence, the reference sam-

. : spectively. Forty-four mass fragments were analyzed in 8
ple could be an authentic polluted environmental sample (for . : )
. : . oL groups of 12 ions using SIM. Twenty replicate reference
screening purposes) or a mixture of oil types (for oil spill

; P A samples analyzed over a period of 2 months were used to
identification). In the present work, a 1:1 mixture of Brent test peak matching. parameter estimates. and uncertainty of
crude oil (North Sea crude) and a heavy bunker oil from the P 9.p ' y

Baltic Carrier oil spill[31] was used as reference sample. DRs.

Chromatographic data from replicate reference samples are

used in the peak matching algorithm, but can also be used2.1.3. Software

for external normalization of DRs, estimation of analytical The data preprocessing method was implemented in
uncertainty, and for quality contr¢B81]. Reference samples Borland Delphi 4.0 object oriented programming. A ver-

need to be analyzed frequently depending on the rate of col-sion of the program can be obtained by contacting one
umn deterioration. In this study, a reference sample was an-of the authors. The network common data form (NetCDF)
alyzed in the analytical sequence once per eight analyticalis an interface to a library of data access programs for

samples. storing and retrieving scientific data, developed by the
Analytical Instrument Association (AIA). GC-MS chro-
2.1.2. Instrumentation and chemical analyses matograms are exported to the AIA standard format, and

Oil samples were analyzed on a Finnigan TRACE D¥Q  NetCDF implemented in Matlab 6.5 is used to extract and
Single Quadrupole GC-MS (Thermo Electron Corpora- sort data for import to the program. The NetCDF soft-
tion) operated in EI mode and equipped with a 60 m HP- ware is available for download http://my.unidata.ucar.edu
5MS capillary column (0.25 mm i.ck 0.25um film). One The commercial GC-MS software Xcalibur 1.3 was
microliter aliquots were injected in PTV splitless mode. used for comparative data preprocessing throughout the
Starting temperature: 3%, increasing with 14.5C/s to article.


http://my.unidata.ucar.edu/

116 J.H. Christensen et al. / J. Chromatogr. A 1062 (2005) 113-123

2.2. Peak matching algorithm cates the quality of peak matching. The correlation coefficient

(p) for two vectorized data seta @ndb of lengthM) is de-
The purpose of peak matching is to locate the position of fined below (Eq(1)) [34].

a chromatographic peak (i.e. peak maximum) in reference I B

and analytical sample chromatograms affected by run-to-run p(a, b) = 2 m=1(am — @)(bw —b) 1)

retention time variations. After the exact peak maximum has \/ZM—l(am _ 5)ZEM_1(bm _ 1;)2

been found, the peak region (i.e. the data points part of the "= "=

peak) can be determined, which is a prerequisite for the sub-whereM is the number of observations as well as segment

sequent peak fitting. length, anda and b the means of each data set. When us-
ing the correlation coefficient for chromatographic similarity
2.2.1. Peak matching in reference chromatograms matching, large peaks have a large influence on the variance

The first part of peak matching in reference chro- compared to small ones, and thus the effect of noise is negli-
matograms is optional and consists of a manual time shift gible. The optimal retention time shift (i.e. scan number) for
of each chromatogram by adding or subtracting a constant.P; is the A-value withp closest to 1.

Large constant retention time shifts can be generated by
changing the chromatographic parameters (e.g. carrier ga2.2.3. Determination of the peak maximum

flow, temperature program) or by cutting pieces of the capil-  In the third step of the algorithm, a more exact peak max-

lary column. imum is found. The algorithm initiates at th& found by
segment-wise peak matching, and locates the zero crossing

2.2.2. Segment-wise peak matching of the first derivative closest #; on either side. This value

The fundamentals of the second part of the algorithm is the peak maximum in the new reference sample. A re-
are that except for changes unrelated to chemical compo-quirement for this step is that the residual shifts (betwgen
sition (e.g. retention time shifts, changes in sensitivity and andP;), after segment-wise matching, are less than half the
peak shapes), replicate laboratory reference chromatogramslistance between neighboring peaks. Otherwise, peaks may
should be perfectly correlated. Consider two chromatogramsbe wrongly assigned. The estimated derivative is throughout
in which a number of peaks are to be matched. A pégaik ( the paper calculated for each point in a chromatogram as the
one of these chromatograms is chosen as the targeafd difference between the intensity at the current scan number
the peak maximum of the corresponding peak in the other and the number that precedes it. In this way, integration is
reference chromatograr®;] is then matched to it, by com-  straightforward by cumulative summation.
paring the appearance of the chromatogram surrounding the
target peakKig. 2). Specifically, a segment of leng¥ in 2.2.4. Peak matching in analytical sample
the target chromatogram, centered at peak maximg)nié chromatograms
compared to segments of equal length in the new reference The retention time (i.e. scan number) of peaks in the lab-
chromatogram. For each peak matching, a finite number of oratory reference sample analyzed closest in time to the con-
possible integer shifts in the new reference defined by the sidered analytical sample is used as initial estimatetg of
maximum shift parametet)(is investigated. The chromato- if peaks are present in the laboratory reference. If a peak is
graphic features surroundiniy is compared to those of 11  not presentir for that peak is estimated by polynomial in-
different segments when the maximum shift parameter is 5 terpolation along retention time using the shifts observed for
(centered at-5 to +5 (A) of tg). other peaks in that chromatogram. In either case, the algo-

The correlation coefficient is used for chromatographic  rithm determinedr as the zero crossing of the first deriva-
similarity matching of segments aroufg and P;, respec- tive closest to this initial estimate. A requirement for correct
tively, because the degree of co-variation in segments indi- peak matching in analytical samples is that for all peaks the

M
Target peak (T)----- | | R
tg
Pi(A=0) e { | | ——ER
P, (A =+5) ... : I I
P (A =-5) e [ [ }

Fig. 2. Schematic presentation of segment-wise peak matching.
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residual shift between the initial estimatetgfand the peak  2.4. Initial parameterization
maximum is less than half the distance between neighboring

peaks. An important feature of the Gaussian and the EGH model
is that their parameters can be estimated from graphical
2.3. Mathematical peak functions information. We estimated initial values &f, Hr, ando

from the first and second derivatives of the chromatograms.

The basic shape of chromatographic peaks is usually as-{r is the zero c_rossing of t_he first_(_jerivative using a first-
sumed to be symmetrical and can be approximated by a Gausorder interpolation of the first positive and negative value

sian distribution (Eq(2)). on either side of the intersectiofir is the peak height
at this value, andr equals half the peak width at the lo-
—(t — r)? cal extremes in the first derivative (i.e. zero crossings of
h(t) = HRexp| ——— (2) __ o
202 the second derivative). The exact positions of the local ex-

tremes are determined by second-order fits using at least
wheret is the scan numbeh(t) the peak intensitytg, and three scans surrounding the minimum and maximum, respec-
Hr the position and height at the peak maximum, and tively. The mean of the two peak widths is used as an estimate
the standard deviation of the Gaussian distribution. How- of ¢.
ever, although a Gaussian distribution gives areasonable fitto  The time constant; of the precursor truncated exponen-
most experimental peaks, these are rarely symmetric. Skew-ial, can be estimated H$8]:
ing of peaks can occur by lengthening of either the lead-
ing or tailing edge, termed fronting and tailing, respectively , _ —(Bo — Ac) 4)
[27]. Development of peak functions capable of describ- 2Ina

ing asymmetrical peaks has been the subject of numerous, herea,, (tailing part) and, (leading part) are the distances
publlcat|0n§[26—29,_35] where e.g. the gxponentlal mOd'_' from tr, andw is the fraction of the peak height at which the
fied Gaussian function (EMG) has received much attention distances are measured (exg: 0.1). We do not recommend
[26,36] that this procedure is applied to peaks unresolved at values

Th? most f;equc—:‘_nt”apphc?uon of pEak functions ?'forde- abovee, or baseline distorted peaks, since this may lead to
convolution of partially resolved peaks, and smoothing ex- ¢roneous estimations &, andB, .

perimental peaks for the determination of statistical moments

[26,37] For these purposes, it is desirable that the mathe- ) o

matical models can describe peaks perfectly, and hence they°—-5- Simplex estimation of peak parameters

should possess sulfficient flexibility to fit peaks of different _ S

shapes. Consequently, peak functions found in literature are A Simplex minimization procedur¢39] was used for
often flexible with five to nine parameters, but numerically Parameter estimation using either the Gaussian or EGH
unstable, and not easy to automatically fit to experimental Model, with the initial parameterization as starting val-
peaks. For environmental screening purposes, a perfect peak'®S- R, Hr, o, and r were estimated for resolved peaks,
fit is of less importance, and peak functions with acceptable Whereast was fixed for incompletely resolved peaks. The
fits to most experimentally occurring peak shapes, with the Skewness parameter)(for peak clusters may be approx-
use of few parameters, are preferable. One such function, thdmated from resolved peaks in the neighborhood of the
exponential-Gaussian hybrid (EGH) was proposed by Lan cluster, or from. the fronting and ta|I|n_g parts of the first
and Jorgenson (200[38]. This function is closely related to ~ @nd last peak in the cluster, respectively. The parameter
the EMG, with higher stability and improved peak descrip- €Stimations were terminated after a maximum number of
tion at high asymmetries. Furthermore, the EGH defined in itérations, or when the peak fit quality reached a lower

Eq. (3), has only one additional paramete) compared to ~ lImit.
the Gaussiafg].
2.6. Peak regions
_(t_tR)z 2
Hrexp| 55—~ |, 205+7t(t—1w)>0, . , ,
h(t) = Zog+r(t—tR) Peak regions were determined from the peak maximum

0. 2092 7t —1r) <0, as zero crossings o_f the firs_t derivativ_e on either side _of_ 'Fhis
) value. OnI)_/ da_ta pomts_Wlthm th|s_ region are used for initial
parameterization and simplex estimation of peak parameters.
where o g is the standard deviation of the precursor Gaussian, For overlapping peaks, the peak region was defined as the start
and t the time constant of the precursor exponential. Like of the first peak to the end of the second peak. The Gaussian
the EMG, profiles of EGH approaches a Gaussian profile asand EGH peak estimates utilize a different number of data
T — 0, and a truncated exponential profilergs— 0. Notice points. The EGH utilizes data from the whole peak region,
that the EGH is easily replaceable by another function with whereas the Gaussian utilizes data points within of the
few parameters. peak maximum.
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2.7. Estimation of the chromatographic noise levels tensities are set to zero if these are less than zero after
integration.
In complex chemical mixtures, the chromatographic noise (V) Initial parameterization.
is composed of instrumental noise (electronic noise), and (VI) Simplex estimation of peak parameters and calculation

“chemical noise” (e.g. from co-elution of minor compo- of peak areas.

nents). Especially, the latter varies between mass fragments(VIIl) Estimated parameters substitute old ones and the algo-
and along the retention time axis, and thus affects detection rithm continues from (ll) if the peak area (or height)
limits. The following iterative procedure was used to estimate is smaller than or equal to the one calculated at lower
chromatographic noise for each chromatogram. noise limit, and at least one data point in the peak re-

gion is above the current noise limit. The iteration pro-
cedure is terminated if the peak area is equal to zero
(i.e. peak below current noise limit).

() The standard deviation of the first derivative of a chro-
matogram is calculated.

(I) Peak regions containing at least one value larger than
three times the standard deviation are left out and the
standard deviation of the first derivative recalculated.

(1) Step llis repeated until only a certain percentage of data
points, remains (default=5%), no values exceed three
times the standard deviation, or the number of iterations
exceeds the maximum allowed (default = 35).

The effects of increasing the noise limit are that more
data points in the first derivative are set to zero, until at
very high values where chromatographic information is no
longer retained. Steps Il and IV of the algorithm not only
works by reducing the background outside peak regions,
it also has an effect on the background noise within peak
regions. Due to the decrease of the first derivatives out-
side peak regions by increasing the noise limit, the cumu-
) ) o lative sums within peak regions are also reduced compared

An iterative peak estimation procedure based on chro- , the original chromatographic abundances, without sub-
matographic noise levels and the two mathematical peakjgciive user interference. The purpose of the algorithm is
functions is used to determine peak heights and areas. Ay, s tg estimate peak parameters at some intermediate noise
lower (dmin) and upper dmay) level of detection is defined |t (the optimal). At this value, which varies for each peak,

as integer multiplications of the estimgted noi;e for each {0 background outside the peak region is set to zero, and
chromatogram, and used to remove uninformative data (€.9.qatq points within the region become background correc-
background and noise). The total number of stépin, ted.

anddmay determines the step size (default valuedgf and
dmax equal 1 and 20 times the noise, respectivelguals
20, resulting in a step size of 1). The algorithm is elaborated

2.8. Peak estimation algorithm

3. Results and discussion

below:
() The first derivative is calculated for each chro- To obtain basic data for chromatographic preprocess-
matogram. ing, a compound database was set up using the first ref-
(I) Setting the noise limit (increased for each step from erence sample in the analytical sequence. We selected 120
dmin t0 dmax With step size). compounds from a suite of chemical groups of oil com-

(Il1) Data below current noise limit are set to zero, except ponents listed infable 1 The corresponding peaks repre-
for data points within peak regions, which are left un- sent a wide range of typical experimental peak shapes, from
changed. moderately fronting to tailing, well-separated, and incom-

(IV) Cumulative summation (i.e. integration) of the first pletely resolved, as well as peaks with varying signal-to-noise
derivative after imposing the current noise limit. In- ratios.

Table 1

Summary of the distribution of peaks within compound groups and correspominvglues

Compound group m/'z Peaks Compound group m'z Peaks
Naphthalene 128 1 Triterpanes 191 13
Ci-naphthalenes 142 2 Steranes/diasteranes 217/218 18
Cp-naphthalenes 156 8 Chrysene/benz(a)anthracene 228 2
Csz-naphthalenes 170 7 Triaromatic steroids 231 7
Cy-naphthalenes 184 9 Five ringed PAHs 252 3
Phenanthrene/anthracene 178 2 Fluorene 166 1
C;-phenanthrenes/anthracenes 192 5 1-fiGorenes 180 4
C,-phenanthrenes 206 12 1dibenzothiophenes 198 4
Dibenzothiophene 184 1 Aibenzothiophenes 212 8
C;-benzothiophenes 148 4 Deuterated surrogate mixture 136/212/264 3
C;-pyrenes/fluoranthenes 216 6
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The variable database consisted of 74 DRs of single com-the optimal retention time shifts are used for the subsequent
pounds. All ratios comprised peaks within the same chro- peak fitting as an estimate t{.
matogram (i.em/zvalue) to decrease the variation caused by  The risk of wrong peak assignments increases for small
analytical uncertainty unrelated to the chemical composition segments and large maximum shifts. The former reduces the
[31]. The identities of DRs are not listed here, since they are amount of chromatographic information available for simi-
irrelevant for testing the method. Twenty replicate reference larity matching, whereas the latter increases the flexibility.
samples analyzed as part of a large analytical sequence (i.eOn the other hand, it is a requirement that the flexibility is
300 oil samples and quantification standards) were used forhigher than the largest shift between adjacent samples. An up-

testing. per limit of segment size for perfect peak matching was not
) reached for this data set, because run-to-run retention time
3.1. Peak matching variations were limited. For data containing large shifts and

o _hence requiring a high flexibility, the use of large segments
It was unnecessary to pgrform coarse retention time shifts jmay result in bad assignments. The probability of incorrect
for the current data set, since there were no large constanpeak assignments increases further when the signal-to-noise

shifts between adjacent reference samples. The peak matchratio for the specified peak is low, because its contribution to
ing algorithm was used for matching peaks in 20 replicate the correlation coefficient is small.

reference chromatogramB;] by using the preceding refer-

ence in the analytical sequence as targex (e.g. the first 3.2. lterative background noise reduction

was used as target for the second and so forth). Hence, the

maximum shift parametel)(depends on the maximum shift Baseline subtraction is an important part of an automatic
observed between adjacent reference samples in the analytidata preprocessing procedure. In standard chromatographic
cal sequence. A peak consisted of approximately 15—-25 datasoftware, a baseline is set by the integration parameters, and
points depending on retention time and asymmetry. Segmentit is often necessary to change these manually, especially
sizes between 5 and 500 data points were tested, and for thigor baseline distorted and incompletely resolved peaks. One
data set, segments larger than 25 data points gave a perfeaway of automatically handling the baseline would be to per-
peak-match for all 120 peaks. For this study, we chesEb, form polynomial- or piecewise-linear baseline fits. However,
which gave an adequate flexibility, and a segment size of because peaks are often not baseline separated in complex
160 corresponding to the width of 6-10 peakisy. 3illus- chemical mixtures, it is difficult and subjective to determine
trates peak matching of an incompletely resolved peak, 2-/3- baseline points.

methyldibenzothiophenes. Fig. 3b, segments of nine refer- In addition to iterative background noise reduction in the
ence chromatograms have been shifted manually by addingneighborhood of each selected peak, the procedure also de-
or subtracting the optimal retention time shift for the specified fines detection limitsFig. 4 illustrates the effects of iter-
peak. The quality of matching is evident, and similar results ative background noise reduction on six chromatographic
were observed for all 120 compounds in the peak databasepeaks (tetracyclic steranes/z217). The composition of ster-
Note that chromatograms are not retention time shifted asanes is often very complex with a highly elevated baseline
part of the complete preprocessing procedure. Conversely,and coeluting peaks. Hence, only a fraction of these com-
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The EGH gives a better description of the asymmetric
peaks with RRMSE between 1.6 and 5.4% compared to 4.7
and 11.7% for the Gaussian function. Conversely, the two
] 1 functions describe symmetric peaks, such as phenanthrene
: (Fig. &c), equally well (RRMSE =1.1% in both cases). For
screening purposes, the fit quality is of less importance com-
pared to systematic discrepancies in peak areas or heights.
The 120 peaks considered in this study cover a broad range
of asymmetries and signal-to-noise ratios. Data calculated by
the Gaussian function deviated from those calculated by the
A v EGH by between-9 and +2% for peak areas, are to

) ¥ +4% for heights. These variations are systematic and depend
on peak asymmetry related to the compound properties (e.g.
: boiling point and polarity). However, DRs are affected in the
5750 same direction when calculated for different reference and
analytical samples, which minimize the significance of these
systematic discrepancies.
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Fig. 4. Background reduction. A section of tiz217 chromatogram (tetra-
cyclic steranes) from scan number 5480 to 5762 is shown for: |, the untreated

chromatogram; 11, after imposing a noise limit ofInoise; and Il, after 3.4. Peak fit quality of incompletely resolved peaks
iterative noise removal wittmin = 1 x noise andlnax=20x noise using 20
steps. Commercial softwares use the perpendicular-drop-down

or tangent-fitting methods to analyze incompletely separated

pounds is commonly employed for chemical fingerprinting peaks in commercial software. Since the EGH function con-

[32,40] tains an additional parameter compared to the Gaussian, it
A significant part of the background is removed by impos- is more flexible in a way which affects the approximation of

ing a noise limit of one times the noise. However, itis evident mu|tip|e peaks negative|y (eg for two peaks eight param-
that the background noise reduction becomes more efficienteters need to be approximated). Hence, for computational

when the iterative peak estimation algorithm is applied. This reasons and to avoid local minimais fixed prior to the iter-
procedure employs the optimal noise limit for each of the ation, or a purely Gaussian description is applied. Here, we
six individual peak regions. The background correction seen chose the Gaussian descriptiars 0) since the estimation of
here is comparable to that of commercial softwares, for peaksz s difficult and uncertain when peaks are baseline distorted.
with large signal-to-noise ratios. Conversely, it is more ob- Fig. 6 shows two examples of incompletely resolved peaks
jective and less time consuming for baseline distorted peakswith height ratios of approximately 1:1 and 1:8, respectively.
with low signal-to-noise ratio. The data set comprises a total of 10 peak clusters of in-
completely resolved peaks with chromatographic resolution
(R)<1.5. R=At/40, where At is the difference in the re-

tention time maxima of two components, andhe average
The simplex estimation procedure attempts to improve an standard deviation of two Gaussian peaks. The iterative es-

initial set of peak-shape parameters by direct minimization in timation of Gaussian parameters gives acceptable peak fits
error space. Hence, its success in generating good parametedpr peak clusters analyzed in this study, which include height
estimates is strongly dependent on the model function, how ratios between 1:1 and 1:8, and chromatographic resolution
well it represents real peaks, and the method for initial param- as low as 0.65 (2-/3-methyldibenzothiophené&ig. 4).
eterization. The relative root mean squared error (RRMSE)

is used to evaluate the quality of each mathematical function 3 5. Quality of diagnostic ratios
for describing chromatographic peaks (E5)).

3.3. Peak fit quality of single peaks

¥ 5 The variability of DRs within 20 replicate reference sam-

RRMSE= 100 x > n=1lan — a}) (5) ples was compared for Gaussian, EGH, and peak quantifica-
SN (an)? tié)n using commercial software. DRs were calculated by Eq.

whereN is the number of data points in the peak regian, ©)

experimental observations, anfl model estimations. Data R

R a,

points used for calculating RRMSE are shown asfilled circles DR™ = @R +dR) (6)
n

in Figs. 5 and 6Fig. 5illustrates how well the Gaussian and
the EGH functions describe experimental peaks with a broadwherea? is the area or height of peakor n" in the sam-

range of asymmetries, from moderately fronting to tailing ple. DRs were calculated for individual peak areas or heights
(t=-0.97 to +0.75). (i.e. the area or height of the first peak divided by that of the
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Fig. 5. Gaussian and EGH fit of chromatographic peaks. (a) Naphthalene (moderately frontin@.97), G-benzothiophene isomer (fronting= —0.54),
phenanthrene (symmetrical= 0.03), 18(H), 17a(H), 20R-diacholestane (moderately tailing; 0.75). Peak parametertg (o, Hr, andt), peak areas, and
RRMSE are listed in plots. Data points used for calculating RRMSE are shown as filled circles.

second peak) from well-resolved peaks, resolved but base-solved and baseline distorted peaks, respectively, using the
line distorted, and for peak clusters of incompletely resolved Gaussian function, and to <2.2%, and <8%, for EGH.
peaks.Fig. 7a and b show the relative standard deviation Furthermore, results indicate that the precisions of DRs,
(R.S.D.) (as defined if34]) for 25, 37, and 10 DRs, using calculated on the basis of Gaussian peak estimates, are com-
peak areas or heights, respectively. parable with those obtained with commercial software. For
For well-resolved peaks the Gaussian and EGH peak func-well-resolved peaks, R.S.D.s were <3.2 (areas) and <2.2%
tions based on peak areas gave comparable low uncertaintiegheights), compared to <2.5 and <2.8%, respectively, with
with R.S.D.s < 3.2%. Conversely, for baseline distorted peaks commercial software. For baseline distorted peaks R.S.D.s
the R.S.D.s were lower for the Gaussian function (1.5-6%) were <5.7 and <3.5% compared to <4.6 and <4.0%, and fi-
than the EGH (1.5-16%). The large R.S.D. of some peaks nally for incompletely resolved peaks R.S.D.s were <7.2 and
were caused by data points affected by distorted baselines<6.5% using Gaussian peak estimates, compared to <7.9 and
and reducing the number of data points used in the paramete5%, with commercial software.
estimation to+o solved the problem. Accordingly, we rec- Although, the data quality (based on R.S.D.s) of data
ommend leaving out the most heavily affected data points if obtained using our approach is comparable with commer-
a modified Gaussian peak function is used for approximating cial software, mean values of some DRs depend on the
baseline distorted peaks. The use of peak heidfits {b) method applied. For fronting and tailing peaks the Gaus-
reduced the uncertainties to <2.2%, and <3.5% for well re- sian peak estimates (areas and heights) deviate from those
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Fig. 6. Gaussian fits of incompletely resolved chromatographic peakss{aghthalenes, 1,4,6-/1,3,5-trimethylnaphthalene (146-/135-TMN) and 2,3,6-
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(26-DMP) with height ratio of approximately 1:8. Peak parametgrs( andHg), peak areas, RRMSE, and chromatographic resolution (R) are listed in plots.
Data points used for calculating RRMSE are shown as filled circles.

obtained with the two other methods (data not shown). calculations of DRs from peak heightdg) as the optimal
For baseline distorted and especially incompletely resolved data preprocessing procedure.
peaks, however, data obtained with commercial software de- Before a peak can be detected in our approach (peak detec-
viate systematically from those obtained with the two peak tion limit) there need to be a data point within the peak region,
functions. which exceed the noise multiplied withi, and the number
Generally, DRs based on peak heights were less uncertairof data points within this region must allow initial parame-
compared to those based on areas. This seems reasonabterization oftr, Hr, ando. Furthermore, replicate laboratory
since baseline distortion and the properties of the applied reference samples may be used for quality control of data
peak function affect peak height to a lesser extent than they(control limits). We have previously applied our data prepro-
affect peak areas. DRs calculated for analytical samples cancessing procedure to GC-MS chromatographic data prior to
be normalized to the corresponding DRs in the laboratory PCA. Peak areas based on the Gaussian function were used to
reference sample analyzed closest in tii3&]. Hence, the calculate 88 DRs of PACs and petroleum biomarkers for use
effects of changes in peak shape, which affects heights morein forensic oil spill identificatiof31]. DRs were normalized
than peak areas, can be reduced. Accordingly, we recommendo the laboratory reference oil, which resulted in low analyti-
peak estimations using the Gaussian function followed by cal standard deviations (between 0.05 and 3.2%), comparable

20

R.S.D. (%) of diagnostic ratios

(a)

15

20

0

Well-separated Baseline distorted ;| Incompletely resolved Well-separated Baseline distorted : Incompletely resolved
g
+ = 15t
+ S 15
N g
T =
< 10f
i 4
©
A & +
s o L
A - T o
a
] + A
8 S &
AN
. o é 8 A
O o g A
() 0=

Fig. 7. Precision of DRs using Gaussian, EGH, and commercial software. (a) R.S.D.s of 25 DRs comprised of peak areas of well-resolved peakise37 of basel
distorted, and 10 comprised of incompletely resolved peaks. (b) DRs comprised of peak heights. Sgmb@Els @nd () denote R.S.D.s calculated with
Gaussian, EGH, and commercial software, respectively.
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