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Abstract

Hyphenated analytical techniques such as gas chromatography–mass spectrometry (GC–MS) can provide extensive amounts of analytical
data when applied to environmental samples. Quantitative analyses of complex contaminant mixtures by commercial preprocessing software
a antification.
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re time-consuming, and baseline distortion and incomplete peak resolution increase the uncertainty and subjectivity of peak qu
ere, we present a semi-automatic method developed specific for processing complex first-order chromatographic data (e.g.
onitoring in GC–MS) prior to chemometric data analysis. Chromatograms are converted into semi-quantitative variables (e.g.

atios (DRs)) that can be exported directly to appropriate softwares. The method is based on automatic peak matching, initial param
lternating background noise reduction and peak estimation using mathematical functions (Gaussian and exponential-Gaussian

ew (i.e. three to four) parameters. It is capable of resolving convoluted peaks, and the exponential-Gaussian hybrid improves the
f asymmetric peaks (i.e. fronting and tailing). The optimal data preprocessing suggested in this article consists of estimation o
eak parameters and subsequent calculation of diagnostic ratios from peak heights. We tested the method on chromatographic
eplicate oil samples and found it to be less time-consuming and subjective than commercial software, and with comparable data

2004 Elsevier B.V. All rights reserved.
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. Introduction

Hyphenated analytical techniques like gas chromatogr-
phy–mass spectrometry (GC–MS), liquid chromatography–
ass spectrometry (LC–MS), and gas chromatography–
ourier-transform infrared spectroscopy (GC–FTIR), are
ssential analytical tools for, e.g. research and development,
nvironmental monitoring, and process chemistry. These
ethods have the capability of generating extensive amounts
f data when applied to complex mixtures of contaminants
s those present in polluted environmental samples (e.g. sed-

ment, soil, sludge, and biota). Such samples often contain

∗ Corresponding author. Tel.: +45 46 30 12 00; fax: +45 46 30 11 14.
E-mail address:jch@dmu.dk (J.H. Christensen).

mixtures of contaminants with different physicochem
properties, degradability, and toxicity.

Despite of this inherent complexity, only a small p
centage of the total number of compounds are usually
sidered for environmental monitoring and chemical fin
printing [1–4]. A well-known example concerns monitori
and source correlation of polycyclic aromatic compou
(PACs), which are ubiquitous organic contaminants
varying toxicity, mutagenicity, and carcinogenicity. In
dition to biogenic sources, PACs enter the environment
pyrogenic and petrogenic sources and their distribution
often very complex. However, most environmental stu
include merely 16 PACs, selected from the US EPA
ority pollutant list as relevant indicators of PAC polluti
(http://www.epa.gov) [1–3,5]. Hence, in environmental mo
itoring and assessment studies, the number of target
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pounds are often reduced prior to the chemical analysis.
One reason is that data preprocessing is time-consuming and
costly, but it also plays a role that univariate statistical anal-
ysis is vastly impeded when considering a large number of
target compounds.

Chemometric methods, e.g. principal component analysis
have been used frequently since the late 1990s for data anal-
ysis in environmental monitoring and chemical fingerprint-
ing studies[3,5–7]. One advantage of multivariate compared
to univariate statistical methods is the ease by which rela-
tions between multiple samples and variables can be resolved
and visualized by score and loading plots. Additional advan-
tages include noise reduction, obtained by multiple measure-
ments of the same phenomenon (e.g. interrelated variables),
and the ability to detect outliers[8]. However, multivariate
methods still depend on chromatographic data preprocessing,
which traditionally have focussed on resolving and quantify-
ing peaks using internal and quantification standards.

In processing software included in software packages
of mass spectrometers it is unlikely to select one set of
peak identification and quantification parameters, optimal
for hundreds of peaks with different signal-to-noise ratio,
chromatographic resolution, and shape. Especially for
baseline distorted and incompletely separated peaks, manual
parameter adjustment is often necessary leading to increased
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during column deterioration will affect the multivariate data
analysis negatively, due to changes in intensity distribution
of adjacent retention times within a peak region. Peak
quantification is less affected by these factors since peak
areas and heights are relatively independent of peak shape.

Eide et al. (2001) presented a strategy to predict muta-
genicity of organic extracts of exhaust particles from full
scan GC–MS patterns of complex mixtures[21]. They based
data preprocessing on an iterative curve resolution technique
[22,23]capable of resolving second-order data (i.e. full-scan
GC–MS data were resolved into chromatographic peaks and
mass spectra). Curve resolution techniques have been used
frequently to resolve overlapping peaks in second-order
data[24,25]. However, these methods are not applicable to
first-order data such as GC–MS with selected ion monitoring
(SIM). Furthermore, iterative curve resolution techniques
for resolving second-order data (GC–MS scan) are not
likely to be able to resolve peaks in very complex chemical
mixtures such as oil because multiple peak overlap (5–10
peaks) occur frequently.

Numerous mathematical functions have been used for pre-
sentation of chromatographic peaks and for deconvolution of
incompletely resolved peaks in first-order data[26]. Many
functions are based on the Gaussian function which gives
good approximations of symmetric chromatographic peaks
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ubjectivity and time-consumption. The demands
uantification- and surrogate standards as well as rete

ime shifts are further impediments for preproces
ata from the analysis of complex chemical mixtu
artly overlapping peaks are usually quantified u
erpendicular-drop or tangent-skimming algorithms in
orated in commercial integrators[9,10]. However, thes
ethods introduce systematic errors in the calculated
reas and heights, depending on the degree of peak
etry and relative peak size[9–11]. Thus, to exploit the fu
otential of multivariate statistical methods for simultane
tatistical analysis of extensive data, and to reduce the
ectivity and uncertainty introduced by human intervent
here is a need to improve existing preprocessing meth

One approach to deal with the above-mentioned prob
s to perform the analysis on sections of digitized ch

atograms[12–15]. However, such analyses are sensitiv
ven minute variations in retention times, because each
idual scan number is a variable. Several alignment met
ave been suggested to correct for retention time shi
hromatographic data[13,15–17]. Dynamic time warpin
nd correlation optimized warping are alignment meth

hat seem to work for a broad range of chromatogr
12,15,18–20]. Alignment combined with backgroun
oise reduction and normalization reduces the uncert
nd subjectivity introduced by peak quantification,

t makes simultaneous analysis of contaminant mixt
y, e.g. PCA feasible[12]. However, these methods c

ntroduce erroneous data[19,20], and residual misalignme
s sometimes present in data[12,19,20]. Furthermore
ariations in peak shape (e.g. from symmetrical to tail
-

27]. However, for asymmetric peaks, a Gaussian approx
ion is not adequate, and other more flexible functions
etter peak descriptions[26–29]. On the other hand, the

unctions are often too flexible for proper approximation
xperimental peaks, and are hence inapplicable for scre
urposes.

In this paper, we present a method for semi-quantit
nalysis and screening of complex chemical mixtures.
ethod is developed specific for semi-quantitative ana
f first-order data, and here we apply it for preproces
C–MS (SIM) data of petroleum hydrocarbons for

n forensic oil spill identification (i.e. source correlatio
he method is based on automatic peak matching, i
arameterization, alternating background noise redu
nd peak estimation, using mathematical functions with
arameters.

. Method

The overall concept of a joint method for preproces
rst-order data from hyphenated analytical techniques
educe the time and cost of processing complex chem
ata, increase data quality, and to increase objectivity.
ethod consists of a collection of procedures that altog

onvert chromatograms into semi-quantitative variables
iagnostic ratios (DRs), which have been used frequ

or oil spill identification [30–33]. The method is capab
f extracting ratios based on peak areas or heights, an
Rs can easily be externally normalized to the ratio in

aboratory reference analyzed closest in time to the anal
il sample[31].
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A compound database (i.e. retention times (RT), chemical
names, and abbreviations) is set up prior to chromatographic
preprocessing. Furthermore, semi-quantitative variables
are defined in a variable database, which in contrast to the
compound database can be redefined at all times during
data processing. The preprocessing method is divided into a
procedure for laboratory reference chromatograms, and one
for sample chromatograms. The peak matching algorithm
is based on the fact that chromatograms of replicate samples
are identical, except for differences unrelated to the chemical
composition (e.g. retention time shifts and detector sensitiv-
ity). Thus, peaks in replicate reference chromatograms are
matched in a three-step procedure, whereas peaks in sample
chromatograms are matched from retention times of the cor-
responding peaks in the reference analyzed closest in time.
Subsequently, peak limits are determined as zero crossings
of the first derivative of the chromatogram, on either side of
the peak maximum. A subsection of these data points is used
for calculating peak parameters, assuming either Gaussian
or modified Gaussian peak shapes. The procedure combines
background noise reduction (i.e. imposing an increasingly
large noise limit to data) and simplex estimation of peak pa-
rameters. Finally, DRs and their uncertainties are calculated,
quality controlled, and exported to chemometric software.
Integer values (i.e. scan numbers) are used throughout the ar-
t n in
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Fig. 1. Flowchart for the data preprocessing method.

315◦C and hold for 1 min during transfer; carrier gas:
helium (1.0 ml/min); temperature program: 35◦C (2 min),
60◦C/min to 100◦C, 5◦C/min to 315 (20 min); data acquisi-
tion time 2.34 scans/s. Mass spectrometric conditions: trans-
fer line and ion source temperature: 300, and 250◦C, re-
spectively. Forty-four mass fragments were analyzed in 8
groups of 12 ions using SIM. Twenty replicate reference
samples analyzed over a period of 2 months were used to
test peak matching, parameter estimates, and uncertainty of
DRs.

2.1.3. Software
The data preprocessing method was implemented in

Borland Delphi 4.0 object oriented programming. A ver-
sion of the program can be obtained by contacting one
of the authors. The network common data form (NetCDF)
is an interface to a library of data access programs for
storing and retrieving scientific data, developed by the
Analytical Instrument Association (AIA). GC–MS chro-
matograms are exported to the AIA standard format, and
NetCDF implemented in Matlab 6.5 is used to extract and
sort data for import to the program. The NetCDF soft-
ware is available for download athttp://my.unidata.ucar.edu.
The commercial GC–MS software Xcalibur 1.3 was
used for comparative data preprocessing throughout the
a

icle as retention time. A flowchart of the method is show
ig. 1.

.1. Experimental and software

.1.1. Application of a reference
Repeated analysis of a laboratory reference sample

rerequisite for proper data preprocessing. Its sample
cteristics and chemical composition need to be compa

o those of the analytical samples. Hence, the reference
le could be an authentic polluted environmental sample
creening purposes) or a mixture of oil types (for oil s
dentification). In the present work, a 1:1 mixture of Br
rude oil (North Sea crude) and a heavy bunker oil from
altic Carrier oil spill [31] was used as reference sam
hromatographic data from replicate reference sample
sed in the peak matching algorithm, but can also be

or external normalization of DRs, estimation of analyt
ncertainty, and for quality control[31]. Reference sampl
eed to be analyzed frequently depending on the rate o
mn deterioration. In this study, a reference sample wa
lyzed in the analytical sequence once per eight analy
amples.

.1.2. Instrumentation and chemical analyses
Oil samples were analyzed on a Finnigan TRACE DSQTM

ingle Quadrupole GC–MS (Thermo Electron Corp
ion) operated in EI mode and equipped with a 60 m
MS capillary column (0.25 mm i.d.× 0.25�m film). One
icroliter aliquots were injected in PTV splitless mo
tarting temperature: 35◦C, increasing with 14.5◦C/s to
 rticle.

http://my.unidata.ucar.edu/
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2.2. Peak matching algorithm

The purpose of peak matching is to locate the position of
a chromatographic peak (i.e. peak maximum) in reference
and analytical sample chromatograms affected by run-to-run
retention time variations. After the exact peak maximum has
been found, the peak region (i.e. the data points part of the
peak) can be determined, which is a prerequisite for the sub-
sequent peak fitting.

2.2.1. Peak matching in reference chromatograms
The first part of peak matching in reference chro-

matograms is optional and consists of a manual time shift
of each chromatogram by adding or subtracting a constant.
Large constant retention time shifts can be generated by
changing the chromatographic parameters (e.g. carrier gas
flow, temperature program) or by cutting pieces of the capil-
lary column.

2.2.2. Segment-wise peak matching
The fundamentals of the second part of the algorithm

are that except for changes unrelated to chemical compo-
sition (e.g. retention time shifts, changes in sensitivity and
peak shapes), replicate laboratory reference chromatograms
should be perfectly correlated. Consider two chromatograms
i (
o
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cates the quality of peak matching. The correlation coefficient
(ρ) for two vectorized data sets (a andb of lengthM) is de-
fined below (Eq.(1)) [34].

ρ(a, b) =
∑M

m=1(am − ā)(bm − b̄)√∑M
m=1(am − ā)2

∑M
m=1(bm − b̄)2

(1)

whereM is the number of observations as well as segment
length, and ¯a and b̄ the means of each data set. When us-
ing the correlation coefficient for chromatographic similarity
matching, large peaks have a large influence on the variance
compared to small ones, and thus the effect of noise is negli-
gible. The optimal retention time shift (i.e. scan number) for
Pi is the�-value withρ closest to 1.

2.2.3. Determination of the peak maximum
In the third step of the algorithm, a more exact peak max-

imum is found. The algorithm initiates at thePi found by
segment-wise peak matching, and locates the zero crossing
of the first derivative closest toPi on either side. This value
is the peak maximum in the new reference sample. A re-
quirement for this step is that the residual shifts (betweenTi
andPi), after segment-wise matching, are less than half the
distance between neighboring peaks. Otherwise, peaks may
be wrongly assigned. The estimated derivative is throughout
t s the
d mber
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ation o
n which a number of peaks are to be matched. A peaki) in
ne of these chromatograms is chosen as the target (Ti), and

he peak maximum of the corresponding peak in the o
eference chromatogram (Pi) is then matched to it, by com
aring the appearance of the chromatogram surroundin

arget peak (Fig. 2). Specifically, a segment of lengthM in
he target chromatogram, centered at peak maximum (tR), is
ompared to segments of equal length in the new refe
hromatogram. For each peak matching, a finite numb
ossible integer shifts in the new reference defined by
aximum shift parameter (l) is investigated. The chromat
raphic features surroundingTi is compared to those of 1
ifferent segments when the maximum shift parameter
centered at−5 to +5 (�) of tR).

The correlation coefficientρ is used for chromatograph
imilarity matching of segments aroundTi andPi , respec
ively, because the degree of co-variation in segments

Fig. 2. Schematic present
he paper calculated for each point in a chromatogram a
ifference between the intensity at the current scan nu
nd the number that precedes it. In this way, integratio
traightforward by cumulative summation.

.2.4. Peak matching in analytical sample
hromatograms

The retention time (i.e. scan number) of peaks in the
ratory reference sample analyzed closest in time to the
idered analytical sample is used as initial estimatestR

f peaks are present in the laboratory reference. If a pe
ot present,tR for that peak is estimated by polynomial

erpolation along retention time using the shifts observe
ther peaks in that chromatogram. In either case, the
ithm determinestR as the zero crossing of the first deri
ive closest to this initial estimate. A requirement for cor
eak matching in analytical samples is that for all peak

f segment-wise peak matching.
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residual shift between the initial estimate oftR and the peak
maximum is less than half the distance between neighboring
peaks.

2.3. Mathematical peak functions

The basic shape of chromatographic peaks is usually as-
sumed to be symmetrical and can be approximated by a Gaus-
sian distribution (Eq.(2)).

h(t) = HR exp

(
−(t − tR)2

2σ2

)
(2)

wheret is the scan number,h(t) the peak intensity,tR, and
HR the position and height at the peak maximum, andσ

the standard deviation of the Gaussian distribution. How-
ever, although a Gaussian distribution gives a reasonable fit to
most experimental peaks, these are rarely symmetric. Skew-
ing of peaks can occur by lengthening of either the lead-
ing or tailing edge, termed fronting and tailing, respectively
[27]. Development of peak functions capable of describ-
ing asymmetrical peaks has been the subject of numerous
publications[26–29,35], where e.g. the exponential modi-
fied Gaussian function (EMG) has received much attention
[26,36].
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2.4. Initial parameterization

An important feature of the Gaussian and the EGH model
is that their parameters can be estimated from graphical
information. We estimated initial values oftR, HR, andσ

from the first and second derivatives of the chromatograms.
tR is the zero crossing of the first derivative using a first-
order interpolation of the first positive and negative value
on either side of the intersection.HR is the peak height
at this value, andσ equals half the peak width at the lo-
cal extremes in the first derivative (i.e. zero crossings of
the second derivative). The exact positions of the local ex-
tremes are determined by second-order fits using at least
three scans surrounding the minimum and maximum, respec-
tively. The mean of the two peak widths is used as an estimate
of σ.

The time constant,τ of the precursor truncated exponen-
tial, can be estimated by[38]:

τ = −(Bα − Aα)

2 lnα
(4)

whereAα (tailing part) andBα (leading part) are the distances
from tR, andα is the fraction of the peak height at which the
distances are measured (e.g.α = 0.1). We do not recommend
that this procedure is applied to peaks unresolved at values
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The most frequent application of peak functions is for
convolution of partially resolved peaks, and smoothing
perimental peaks for the determination of statistical mom
[26,37]. For these purposes, it is desirable that the ma
matical models can describe peaks perfectly, and hence
should possess sufficient flexibility to fit peaks of differ
shapes. Consequently, peak functions found in literatur
often flexible with five to nine parameters, but numeric
unstable, and not easy to automatically fit to experime
peaks. For environmental screening purposes, a perfec
fit is of less importance, and peak functions with accept
fits to most experimentally occurring peak shapes, with
use of few parameters, are preferable. One such functio
exponential-Gaussian hybrid (EGH) was proposed by
and Jorgenson (2001)[38]. This function is closely related
the EMG, with higher stability and improved peak desc
tion at high asymmetries. Furthermore, the EGH define
Eq. (3), has only one additional parameter (τ) compared to
the Gaussian[38].

h(t) ≡




HR exp

(
−(t−tR)2

2σ2
g+τ(t−tR)

)
, 2σ2

g + τ(t − tR) > 0,

0, 2σ2
g + τ(t − tR) ≤ 0,

(3

where,σg is the standard deviation of the precursor Gaus
andτ the time constant of the precursor exponential. L
the EMG, profiles of EGH approaches a Gaussian profi
τ → 0, and a truncated exponential profile asτg → 0. Notice
that the EGH is easily replaceable by another function
few parameters.
y

k

e

aboveα, or baseline distorted peaks, since this may lea
erroneous estimations ofAα andBα.

2.5. Simplex estimation of peak parameters

A simplex minimization procedure[39] was used fo
parameter estimation using either the Gaussian or
model, with the initial parameterization as starting
ues. tR, HR, σ, and τ were estimated for resolved pea
whereasτ was fixed for incompletely resolved peaks. T
skewness parameter (τ) for peak clusters may be appro
imated from resolved peaks in the neighborhood of
cluster, or from the fronting and tailing parts of the fi
and last peak in the cluster, respectively. The param
estimations were terminated after a maximum numbe
iterations, or when the peak fit quality reached a lo
limit.

2.6. Peak regions

Peak regions were determined from the peak maxim
as zero crossings of the first derivative on either side o
value. Only data points within this region are used for in
parameterization and simplex estimation of peak param
For overlapping peaks, the peak region was defined as th
of the first peak to the end of the second peak. The Gau
and EGH peak estimates utilize a different number of
points. The EGH utilizes data from the whole peak reg
whereas the Gaussian utilizes data points within±σ of the
peak maximum.
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2.7. Estimation of the chromatographic noise levels

In complex chemical mixtures, the chromatographic noise
is composed of instrumental noise (electronic noise), and
“chemical noise” (e.g. from co-elution of minor compo-
nents). Especially, the latter varies between mass fragments,
and along the retention time axis, and thus affects detection
limits. The following iterative procedure was used to estimate
chromatographic noise for each chromatogram.

(I) The standard deviation of the first derivative of a chro-
matogram is calculated.

(II) Peak regions containing at least one value larger than
three times the standard deviation are left out and the
standard deviation of the first derivative recalculated.

(III) Step II is repeated until only a certain percentage of data
points, remains (default = 5%), no values exceed three
times the standard deviation, or the number of iterations
exceeds the maximum allowed (default = 35).

2.8. Peak estimation algorithm

An iterative peak estimation procedure based on chro-
matographic noise levels and the two mathematical peak
functions is used to determine peak heights and areas. A
lower (dmin) and upper (dmax) level of detection is defined
a ach
c (e.g.
b
a
d
2 ated
b

ro-

om

ept
un-

rst
In-

tensities are set to zero if these are less than zero after
integration.

(V) Initial parameterization.
(VI) Simplex estimation of peak parameters and calculation

of peak areas.
(VII) Estimated parameters substitute old ones and the algo-

rithm continues from (II) if the peak area (or height)
is smaller than or equal to the one calculated at lower
noise limit, and at least one data point in the peak re-
gion is above the current noise limit. The iteration pro-
cedure is terminated if the peak area is equal to zero
(i.e. peak below current noise limit).

The effects of increasing the noise limit are that more
data points in the first derivative are set to zero, until at
very high values where chromatographic information is no
longer retained. Steps III and IV of the algorithm not only
works by reducing the background outside peak regions,
it also has an effect on the background noise within peak
regions. Due to the decrease of the first derivatives out-
side peak regions by increasing the noise limit, the cumu-
lative sums within peak regions are also reduced compared
to the original chromatographic abundances, without sub-
jective user interference. The purpose of the algorithm is
thus to estimate peak parameters at some intermediate noise
l ak,
t , and
d rrec-
t

3

ess-
i t ref-
e d 120
c om-
p re-
s from
m om-
p oise
r

T
S rrespo

C

N
C 18
C 2
C
C
P 1
C
C
D
C 3
C

s integer multiplications of the estimated noise for e
hromatogram, and used to remove uninformative data
ackground and noise). The total number of steps (f), dmin,
nddmax determines the step size (default values ofdmin and
max equal 1 and 20 times the noise, respectively,f equals
0, resulting in a step size of 1). The algorithm is elabor
elow:

(I) The first derivative is calculated for each ch
matogram.

(II) Setting the noise limit (increased for each step fr
dmin to dmax with step size).

(III) Data below current noise limit are set to zero, exc
for data points within peak regions, which are left
changed.

(IV) Cumulative summation (i.e. integration) of the fi
derivative after imposing the current noise limit.

able 1
ummary of the distribution of peaks within compound groups and co

ompound group m/z Peaks

aphthalene 128 1

1-naphthalenes 142 2

2-naphthalenes 156 8

3-naphthalenes 170 7

4-naphthalenes 184 9
henanthrene/anthracene 178 2

1-phenanthrenes/anthracenes 192 5

2-phenanthrenes 206 12
ibenzothiophene 184 1

1-benzothiophenes 148 4

1-pyrenes/fluoranthenes 216 6
imit (the optimal). At this value, which varies for each pe
he background outside the peak region is set to zero
ata points within the region become background co

ed.

. Results and discussion

To obtain basic data for chromatographic preproc
ng, a compound database was set up using the firs
rence sample in the analytical sequence. We selecte
ompounds from a suite of chemical groups of oil c
onents listed inTable 1. The corresponding peaks rep
ent a wide range of typical experimental peak shapes,
oderately fronting to tailing, well-separated, and inc
letely resolved, as well as peaks with varying signal-to-n
atios.

ndingm/zvalues

Compound group m/z Peaks

Triterpanes 191 13
Steranes/diasteranes 217/218
Chrysene/benz(a)anthracene 228
Triaromatic steroids 231 7
Five ringed PAHs 252 3

Fluorene 166
C1-fluorenes 180 4

C1-dibenzothiophenes 198 4
C2-dibenzothiophenes 212 8
Deuterated surrogate mixture 136/212/264
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The variable database consisted of 74 DRs of single com-
pounds. All ratios comprised peaks within the same chro-
matogram (i.e.m/zvalue) to decrease the variation caused by
analytical uncertainty unrelated to the chemical composition
[31]. The identities of DRs are not listed here, since they are
irrelevant for testing the method. Twenty replicate reference
samples analyzed as part of a large analytical sequence (i.e.
300 oil samples and quantification standards) were used for
testing.

3.1. Peak matching

It was unnecessary to perform coarse retention time shifts
for the current data set, since there were no large constant
shifts between adjacent reference samples. The peak match-
ing algorithm was used for matching peaks in 20 replicate
reference chromatograms (Pi) by using the preceding refer-
ence in the analytical sequence as target (Ti) (e.g. the first
was used as target for the second and so forth). Hence, the
maximum shift parameter (l) depends on the maximum shift
observed between adjacent reference samples in the analyti-
cal sequence. A peak consisted of approximately 15–25 data
points depending on retention time and asymmetry. Segment
sizes between 5 and 500 data points were tested, and for this
data set, segments larger than 25 data points gave a perfect
peak-match for all 120 peaks. For this study, we chosel = 15,
w e of
1
t 2-/3-
m r-
e dding
o ified
p ults
w base.
N d as
p rsely,

the optimal retention time shifts are used for the subsequent
peak fitting as an estimate oftR.

The risk of wrong peak assignments increases for small
segments and large maximum shifts. The former reduces the
amount of chromatographic information available for simi-
larity matching, whereas the latter increases the flexibility.
On the other hand, it is a requirement that the flexibility is
higher than the largest shift between adjacent samples. An up-
per limit of segment size for perfect peak matching was not
reached for this data set, because run-to-run retention time
variations were limited. For data containing large shifts and
hence requiring a high flexibility, the use of large segments
may result in bad assignments. The probability of incorrect
peak assignments increases further when the signal-to-noise
ratio for the specified peak is low, because its contribution to
the correlation coefficient is small.

3.2. Iterative background noise reduction

Baseline subtraction is an important part of an automatic
data preprocessing procedure. In standard chromatographic
software, a baseline is set by the integration parameters, and
it is often necessary to change these manually, especially
for baseline distorted and incompletely resolved peaks. One
way of automatically handling the baseline would be to per-
form polynomial- or piecewise-linear baseline fits. However,
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In addition to iterative background noise reduction in
eighborhood of each selected peak, the procedure als
nes detection limits.Fig. 4 illustrates the effects of ite
tive background noise reduction on six chromatogra
eaks (tetracyclic steranes,m/z217). The composition of ste
nes is often very complex with a highly elevated base
nd coeluting peaks. Hence, only a fraction of these c
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Fig. 4. Background reduction. A section of them/z217 chromatogram (tetra-
cyclic steranes) from scan number 5480 to 5762 is shown for: I, the untreated
chromatogram; II, after imposing a noise limit of 1× noise; and III, after
iterative noise removal withdmin = 1× noise anddmax= 20× noise using 20
steps.

pounds is commonly employed for chemical fingerprinting
[32,40].

A significant part of the background is removed by impos-
ing a noise limit of one times the noise. However, it is evident
that the background noise reduction becomes more efficient
when the iterative peak estimation algorithm is applied. This
procedure employs the optimal noise limit for each of the
six individual peak regions. The background correction seen
here is comparable to that of commercial softwares, for peaks
with large signal-to-noise ratios. Conversely, it is more ob-
jective and less time consuming for baseline distorted peaks
with low signal-to-noise ratio.

3.3. Peak fit quality of single peaks

The simplex estimation procedure attempts to improve an
initial set of peak-shape parameters by direct minimization in
error space. Hence, its success in generating good paramete
estimates is strongly dependent on the model function, how
well it represents real peaks, and the method for initial param-
eterization. The relative root mean squared error (RRMSE)
is used to evaluate the quality of each mathematical function
for describing chromatographic peaks (Eq.(5)).

RRMSE= 100×
√∑N

n=1(an − a∗
n)2∑ (5)

w ,
e ta
p cles
i nd
t road
r ling
(

The EGH gives a better description of the asymmetric
peaks with RRMSE between 1.6 and 5.4% compared to 4.7
and 11.7% for the Gaussian function. Conversely, the two
functions describe symmetric peaks, such as phenanthrene
(Fig. 5c), equally well (RRMSE = 1.1% in both cases). For
screening purposes, the fit quality is of less importance com-
pared to systematic discrepancies in peak areas or heights.
The 120 peaks considered in this study cover a broad range
of asymmetries and signal-to-noise ratios. Data calculated by
the Gaussian function deviated from those calculated by the
EGH by between−9 and +2% for peak areas, and−2 to
+4% for heights. These variations are systematic and depend
on peak asymmetry related to the compound properties (e.g.
boiling point and polarity). However, DRs are affected in the
same direction when calculated for different reference and
analytical samples, which minimize the significance of these
systematic discrepancies.

3.4. Peak fit quality of incompletely resolved peaks
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Fig. 5. Gaussian and EGH fit of chromatographic peaks. (a) Naphthalene (moderately fronting,τ =−0.97), C1-benzothiophene isomer (fronting,τ =−0.54),
phenanthrene (symmetrical,τ = 0.03), 13�(H), 17�(H), 20R-diacholestane (moderately tailing,τ = 0.75). Peak parameters (tR, σ, HR, andτ), peak areas, and
RRMSE are listed in plots. Data points used for calculating RRMSE are shown as filled circles.

second peak) from well-resolved peaks, resolved but base-
line distorted, and for peak clusters of incompletely resolved
peaks.Fig. 7a and b show the relative standard deviation
(R.S.D.) (as defined in[34]) for 25, 37, and 10 DRs, using
peak areas or heights, respectively.

For well-resolved peaks the Gaussian and EGH peak func-
tions based on peak areas gave comparable low uncertainties
with R.S.D.s < 3.2%. Conversely, for baseline distorted peaks
the R.S.D.s were lower for the Gaussian function (1.5–6%)
than the EGH (1.5–16%). The large R.S.D. of some peaks
were caused by data points affected by distorted baselines,
and reducing the number of data points used in the parameter
estimation to±σ solved the problem. Accordingly, we rec-
ommend leaving out the most heavily affected data points if
a modified Gaussian peak function is used for approximating
baseline distorted peaks. The use of peak heights (Fig. 7b)
reduced the uncertainties to <2.2%, and <3.5% for well re-

solved and baseline distorted peaks, respectively, using the
Gaussian function, and to <2.2%, and <8%, for EGH.

Furthermore, results indicate that the precisions of DRs,
calculated on the basis of Gaussian peak estimates, are com-
parable with those obtained with commercial software. For
well-resolved peaks, R.S.D.s were <3.2 (areas) and <2.2%
(heights), compared to <2.5 and <2.8%, respectively, with
commercial software. For baseline distorted peaks R.S.D.s
were <5.7 and <3.5% compared to <4.6 and <4.0%, and fi-
nally for incompletely resolved peaks R.S.D.s were <7.2 and
<6.5% using Gaussian peak estimates, compared to <7.9 and
5%, with commercial software.

Although, the data quality (based on R.S.D.s) of data
obtained using our approach is comparable with commer-
cial software, mean values of some DRs depend on the
method applied. For fronting and tailing peaks the Gaus-
sian peak estimates (areas and heights) deviate from those
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Fig. 6. Gaussian fits of incompletely resolved chromatographic peaks. (a) C3-naphthalenes, 1,4,6-/1,3,5-trimethylnaphthalene (146-/135-TMN) and 2,3,6-
trimethylnaphthalene (236-TMN) with height ratio of approximately 1:1; (b) C2-phenanthrenes, 1-ethylphenanthrene (1-EP) and 2,6-dimethylphenanthrene
(26-DMP) with height ratio of approximately 1:8. Peak parameters (tR, σ, andHR), peak areas, RRMSE, and chromatographic resolution (R) are listed in plots.
Data points used for calculating RRMSE are shown as filled circles.

obtained with the two other methods (data not shown).
For baseline distorted and especially incompletely resolved
peaks, however, data obtained with commercial software de-
viate systematically from those obtained with the two peak
functions.

Generally, DRs based on peak heights were less uncertain
compared to those based on areas. This seems reasonable
since baseline distortion and the properties of the applied
peak function affect peak height to a lesser extent than they
affect peak areas. DRs calculated for analytical samples can
be normalized to the corresponding DRs in the laboratory
reference sample analyzed closest in time[31]. Hence, the
effects of changes in peak shape, which affects heights more
than peak areas, can be reduced. Accordingly, we recommend
peak estimations using the Gaussian function followed by

calculations of DRs from peak heights (HR) as the optimal
data preprocessing procedure.

Before a peak can be detected in our approach (peak detec-
tion limit) there need to be a data point within the peak region,
which exceed the noise multiplied withdmin, and the number
of data points within this region must allow initial parame-
terization oftR,HR, andσ.Furthermore, replicate laboratory
reference samples may be used for quality control of data
(control limits). We have previously applied our data prepro-
cessing procedure to GC–MS chromatographic data prior to
PCA. Peak areas based on the Gaussian function were used to
calculate 88 DRs of PACs and petroleum biomarkers for use
in forensic oil spill identification[31]. DRs were normalized
to the laboratory reference oil, which resulted in low analyti-
cal standard deviations (between 0.05 and 3.2%), comparable

F are. (a) 7 of basel
d comp ith
G

ig. 7. Precision of DRs using Gaussian, EGH, and commercial softw
istorted, and 10 comprised of incompletely resolved peaks. (b) DRs
aussian, EGH, and commercial software, respectively.
R.S.D.s of 25 DRs comprised of peak areas of well-resolved peaks, 3ine
rised of peak heights. Symbols (©), (+), and (�) denote R.S.D.s calculated w
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to or smaller than those, obtained by a quantitative method.
Furthermore, the integrated methodology presented in[31]
comprised among others a selection criterion for identify-
ing DRs with large R.S.D.s. Thus, if highly uncertain DRs
are present in data, e.g. introduced by the data preprocess-
ing, these ratios can be detected and subsequently deselected
prior to analysis.

4. Conclusion

A new data preprocessing method specific for processing
first-order data from hyphenated analytical techniques
(e.g. GC–MS) was developed and validated in this article.
The method combines several procedures for data pre-
processing and enables semi-automatic transformation of
chromatograms into semi-quantitative variables (e.g. DRs)
and their uncertainties, which are directly accessible for
chemometric data analysis. Compared to commercial soft-
ware, the method presented here is less time consuming and
more objective. Furthermore, it handles retention time shifts,
which can be a large impediment for standard chromato-
graphic processing. Eventually, it presents an advantage over
commercial software for resolving overlapping peaks. The
perpendicular-drop or tangent-skimming algorithms incor-
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